A Novel Metal-Assisted [3 + 3] Cycloaddition Reaction of Ligated η^1 -Allyl

TAK WAI LEUNG, GARY G. CHRISTOPH and ANDREW WOJCICKI*

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, U.S.A.

Received January 12, 1983

Cycloaddition reactions of transition metal- η^1 allyl complexes with unsaturated electrophilic reagents afford almost invariably [3 + 2] products [1, 2]. The lone exception is the reaction of a few metal- η^1 -allyl complexes with SO₂, which yields what appear to be [3 + 1] cycloadducts of low stability [3]. We now report the first example of [3 + 3] cycloaddition to a transition metal-attached η^1 -allyl ligand.

The complex η^{5} -C₅H₅Fe(CO)₂CH₂CH=CH₂ reacts with one equivalent of $S[NS(O)_2CH_3]_2$ in CH_2Cl_2 solution over 30 min at 25 °C to afford, after filtration through Florisil and crystallization from CH₂Cl₂-pentane, a 75% yield of *1* as a yellow solid, m.p. (dec.) 130 °C. Elemental analysis** shows 1 to be a 1:1 adduct of the reactants. The IR spectrum exhibits two strong $\nu(CO)$ absorptions at 1995 and 1920 cm⁻¹ (CHCl₃ solution) and only two $\nu(SO_2)$ bands, at 1320 and 1155 cm⁻¹ (Nujol mull), suggesting the absence of $S=NS(O)_2CH_3$ [4]. The ¹H NMR spectrum of 1 in CDCl₃ solution shows signals at δ 4.80 (singlet, 5H), 4.4–3.5 complex multiplet, 4H), 3.03 (singlet, 3H), and 2.85 ppm (center of multiplet, 1H). The multiplet at $\delta 4.4-3.5$ ppm collapses to an AB pattern (δ 4.25 and 3.83 ppm, $J_{AB} = 14$ Hz) on irradiation at the frequency of the CH proton at δ 2.85 ppm. These experiments establish that the two NS(O)₂CH₃ groups and the two CH₂ groups are equivalent. The ¹³C NMR spectrum, also in CDCl₃ solution, displays resonances at δ 215.6 (CO), 84.5 (C₅H₅), 62.2 (CH₂), 40.8 (CH₃), and 19.5 ppm (CH) to corroborate the aforementioned conclusions and indicate a six-membered, symmetrical [3 + 3] cycloadduct structure for the newly-formed heterocyclic ring.

Unambiguous structural characterization of 1 is based on a single crystal X-ray study. The crystals are monoclinic, space group $P2_1/c$ with a = 10.380(7), b = 19.565(15), c = 12.437(8) Å, $\beta = 137.446(4)^\circ$, V = 1716.4(2) Å³, and Z = 4. The structure solution

Fig. 1. The molecular structure of 1, with hydrogen atoms omitted. Selected bond distances (Å) are: Fe-C(3), 2.090-(3); C(5)-N(1), 1.497(4); C(4)-N(2), 1.486(4); N(1)-S(1), 1.659(1); N(2)-S(3), 1.641(3); N(1)-S(2), 1.681(2); N(2)-S(2), 1.692(3). Selected bond angles (deg.) are: C(5)-N(1)-S(1), 119.9(1); C(5)-N(1)-S(2), 113.0(1); N(1)-S(2)-N(2), 100.6(1); C(4)-N(2)-S(3), 122.2(2); C(4)-N(2)-S(2), 115.1(2).

by direct methods was based on 2225 observed independent reflections with $I > 3\sigma(I)$ collected at ambient temperature using Mo-K α radiation. Refinement was accomplished to R = 0.050. The structure of 1, Fig. 1 contains a six-membered C(3)CNSNC ring, in a chair conformation, linked to Fe through C(3). The geometry around each nitrogen is essentially planar.

The η^1 -allyl complexes η^5 -C₅H₅Fe(CO)₂CH₂C-(CH₃)=CH₂, η^5 -C₅H₅Mo(CO)₃CH₂C(R)=CH₂ (R = H, CH₃), and Mn(CO)₅CH₂CH=CH₂ undergo similar reactions with S[NS(O)₂CH₃]₂ to afford analogous [3 + 3] cycloadducts. These complexes were characterized by comparison of their spectroscopic properties with those of 1; they will be described fully later [5], along with details of the structure of 1.

In contrast to the aforementioned [3+3] cycloaddition, reaction of η^{5} -C₅H₅Fe(CO)₂CH₂CH=CH₂ with CH₃S(O)₂NSO under comparable experimental

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed. **Anal. Calcd. for $C_{12}H_{16}FeN_2O_6S_3$: C, 33.03; H, 3.70; N, 6.42. Found C, 33.05; H, 3.74; N, 6.23.

conditions affords a [3+2] cycloadduct*, 2, as a yellow solid, m.p. (dec.) 143 °C, in 66% yield. The presence of a five-membered heterocyclic ring in 2 is indicated by the appearance of three IR S-O stretching absorptions at 1335, 1155 ($\nu(SO_2)$), and 1140–1060 (broad) cm⁻¹ (ν (SO)) (Nujol mull), and of a ¹H NMR CH₃ signal at δ 3.10 ppm (CDCl₃ solution), the position of which argues against the presence of S=NS(O)₂CH₃ [4]. The η^1 -allyl complexes η^{5} -C₅H₅Mo(CO)₃CH₂CH=CH₂ and Mn(CO)₅- $CH_2CH=CH_2$ yield analogous [3+2] cycloadducts with CH₃S(O)₂NSO.

The formation of 1 and related [3+3] cycloadducts may proceed via initial formation of [3 + 2]cycloaddition derivatives followed by a rearrangement to stable products. This route is depicted in Scheme 1. A direct, two-step pathway for the formation of the [3 + 3] cycloadducts is improbable, since the nitrogen atoms of S[NS(O)₂CH₃]₂ lack the necessary electrophilic properties to initiate such a sequence. In this context it is noteworthy that the transition metal-propargyl complexes MCH₂C=CC₆H₅ where $M = \eta^5 - C_5 H_5 Fe(CO)_2$, $\eta^5 - C_5 H_5 Mo(CO)_3$, and $Mn(CO)_5$ do afford expected [3 + 2] cycloaddition products, 3, with $S[NS(O)_2CH_3]_2$ [6]. The much higher stability of 3 compared to the proposed intermediate [3+2] cycloadduct in Scheme 1 (4) may derive from a stabilization of the five-membered ring in the former by conjugation, C=C-S=N. And finally, the different stabilities of the [3+2] cycloadducts from metal- η^1 -allyl complexes and each of CH₃S(O)₂NSO and S[NS(O)₂CH₃]₂ suggest that steric effects associated with the NS(O)₂CH₃ group are important.

Acknowledgement

Support of this research by the National Science Foundation, Grant CHE-7911882, is gratefully acknowledged.

References

- 1 A. Wojcicki, in 'Fundamental Research in Organometallic Chemistry', M. Tsutsui, Y. Ishii, and Y. Huang, Eds., Van Nostrand Reinhold, New York, 1982, pp. 569-597. 2 M. Rosenblum, Acc. Chem. Res., 7, 122 (1974).
- L. S. Chen, S. R. Su, and A. Wojcicki, Inorg. Chim. Acta, 3 27, 79 (1978).
- R. G. Severson, T. W. Leung, and A. Wojcicki, Inorg. 4 Chem., 19, 915 (1980).
- T. W. Leung and A. Wojcicki, in preparation. 5
- 6 T. W. Leung and A. Wojcicki, unpublished results.

^{*}Anal. Calcd. for C11H13FeNO5SO2: C, 36.78; H, 3.64. Found: C, 36.61; H, 3.61.